Decorrelation of Neural-Network Activity by Inhibitory Feedback

نویسندگان

  • Tom Tetzlaff
  • Moritz Helias
  • Gaute T. Einevoll
  • Markus Diesmann
چکیده

Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between excitatory (E) and inhibitory (I) neurons, but a consequence of a particular structure of correlations among the three possible pairings (EE, EI, II).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decorrelation by Recurrent Inhibition in Heterogeneous Neural Circuits

The activity of neurons is correlated, and this correlation affects how the brain processes information. We study the neural circuit mechanisms of correlations by analyzing a network model characterized by strong and heterogeneous interactions: excitatory input drives the fluctuations of neural activity, which are counterbalanced by inhibitory feedback. In particular, excitatory input tends to ...

متن کامل

adaptive control of two-link robot manipulator based on the feedback linearization method and the proposed neural network

This paper proposes an adaptive control method based on the feedback linearization technique and a proposed neural network,  for tracking and position control of an industrial manipulator. At first, it is assumed that the dynamics of the system are known and the control signal is constructed  by the feedback linearization method. Then to eliminate the effects of the uncertainties and external d...

متن کامل

The Correlation Structure of Local Neuronal Networks Intrinsically Results from Recurrent Dynamics

Correlated neuronal activity is a natural consequence of network connectivity and shared inputs to pairs of neurons, but the task-dependent modulation of correlations in relation to behavior also hints at a functional role. Correlations influence the gain of postsynaptic neurons, the amount of information encoded in the population activity and decoded by readout neurons, and synaptic plasticity...

متن کامل

Associative Decorrelation Dynamics in Visual Cortex

This paper outlines a dynamic theory of development and adaptation in neural networks with feedback connections. Given input ensemble, the connections change in strength according to an associative learning rule and approach a stable state where the neuronal outputs are decorrelated. We apply this theory to primary visual cortex and examine the implications of the dynamical decorrelation of the...

متن کامل

A neural mass model of CA1-CA3 neural network and studying sharp wave ripples

We spend one third of our life in sleep. The interesting point about the sleep is that the neurons are not quiescent during sleeping and they show synchronous oscillations at different regions. Especially sharp wave ripples are observed in the hippocampus. Here, we propose a simple phenomenological neural mass model for the CA1-CA3 network of the hippocampus considering the spike frequency adap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012